Analysis Tier I Exam

January 2023

- Be sure to fully justify all answers.
- Scoring: Each problem is worth 11 points.
- Please write on only one side of each sheet of paper. Begin each problem on a new sheet, and be sure to write a problem number on each sheet of paper.
- Please be sure that you assemble your test with the problems presented in correct order.

1. Let $\left\{f_{n}\right\}$ be a sequence of nonnegative, continuous, real-valued functions on $[0,1]$ with the property that $f_{n}(x) \leq f_{n+1}(x)$ for all $x \in[0,1]$, and $n \in \mathbb{N}$. Assume that $\left\{f_{n}\right\}$ converges uniformly on $[0,1]$ to a function f. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left(\sum_{k=1}^{n}\left(f_{k}(x)\right)^{n}\right)^{1 / n} d x=\int_{0}^{1} f(x) d x
$$

2. Consider the infinite series

$$
\sum_{a, b \geq 0} \frac{1}{p^{a} q^{b}}=1+\frac{1}{p}+\frac{1}{q}+\frac{1}{p^{2}}+\frac{1}{p q}+\frac{1}{q^{2}}+\cdots
$$

where p, q are distinct primes and the terms are reciprocals of positive integers that are products of powers of p and powers of q. Thus in the sum a, b range over all nonnegative integers. Prove that the series converges and find the sum of the series.
3. Let $\left\{f_{n}\right\}$ be a sequence of continuous, real-valued functions on $[0,1]$ with the property that for some function f on $[0,1]$,

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)
$$

for each sequence of points $\left\{x_{n}\right\} \subset[0,1]$ with $\lim _{n \rightarrow \infty} x_{n}=x$, and all $x \in[0,1]$. Prove or give a counterexample: $\left\{f_{n}\right\}$ converges uniformly to f on $[0,1]$.
4. Does there exist a sequence $\left\{f_{n}\right\}$ of continuously differentiable functions on \mathbb{R} that converges uniformly to a limit function f that is not differentiable at 0 ? Either give an example with full explanations or show that such a sequence cannot exist.
5. Show that

$$
\lim _{n \rightarrow \infty}\left(\frac{\sqrt{1}+\sqrt{2}+\cdots+\sqrt{n}}{n}-\frac{2}{3} \sqrt{n}\right)=0 .
$$

6. Let C be a simple closed curve that lies in the plane $x+y+z=1$. Show that the line integral

$$
\int_{C} z d x-2 x d y+3 y d z
$$

only depends on the area of the region enclosed by C and not on the shape of C or its position in the plane.
7. For a point $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ in the unit cube $[0,1]^{n}$, let $A_{n}(\mathbf{x})=$ $\frac{\sum_{i=1}^{n} x_{i}}{n}$ be the average value of its coordinates.
(a) Show that for any $\delta \in(0,1)$,

$$
\delta^{2} \int_{J_{\delta}} d x_{1} \cdots d x_{n} \leq \frac{1}{12 n}
$$

where $J_{\delta}=\left\{\mathbf{x} \in[0,1]^{n}:\left|A_{n}(\mathbf{x})-\frac{1}{2}\right|>\delta\right\}$.
(b) Show that for any continuous function f on the interval $[0,1]$,

$$
\lim _{n \rightarrow \infty} \int_{[0,1]^{n}} f\left(A_{n}(\mathbf{x})\right) d x_{1} \cdots d x_{n}=f\left(\frac{1}{2}\right)
$$

You may use part (a).
8. Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
f(x, y, z)=x^{2} y+e^{x}+z
$$

(a) Show that there exists a differentiable function ϕ defined in a neighborhood U of $(1,-1)$ in \mathbb{R}^{2} such that $\phi(1,-1)=0$ and $f(\phi(y, z), y, z)=0$ for all $(y, z) \in U$.
(b) Find the values of the gradient $\nabla \phi(1,-1)$.
9. For $n \geq 2$, let $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the polynomial $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} x_{j}^{2 j+1}$. Suppose that $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuously differentiable function with $p\left(\mathbf{f}\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Show $\operatorname{det} \mathbf{f}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=0$ for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ where

$$
\mathbf{f}^{\prime}=\left[\begin{array}{cccccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdot & \cdot & \cdot & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdot & \cdot & \cdot & \frac{\partial f_{2}}{\partial x_{n}} \\
\cdot & & & & \cdot \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdot & \cdot & \cdot & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

